tunable lasers

This article is brought to you by: 

Tunable lasers at work with trapped ions

Professor Tobias Schaetz from the Amo Research Group at the University of Freiburg, Germany describes the group's experimental work with trapped ion systems. Coulomb crystals consisting of isotopically pure Magnesium ions are built employing a new tunable continuous-wave (cw) laser light source: Mg atoms are isotope-selective ionized by resonant two-photon excitation at a wavelength of 285.3 nm.

This article is brought to you by: 

Single molecule spectroscopy using tunable lasers

The fluorescence excitation spectra of single organic molecules in a solid state crystal are measured at cryogenic temperatures using a single frequency tunable laser light source based on optical parametric oscillator technology. This laser exhibits promising features as a light source for spectroscopy applications, including a broad tuning range from 450 to 650 nm, narrow linewidth < 1 MHz and mode-hop-free tuning over > 25 GHz. This application note presents the experimental setup, measured spectra and discusses the applicability of this kind of laser for high-resolution spectroscopy.