Thanks for visiting Electro Optics.

You're trying to access an editorial feature that is only available to logged in, registered users of Electro Optics. Registering is completely free, so why not sign up with us?

By registering, as well as being able to browse all content on the site without further interruption, you'll also have the option to receive our magazine (multiple times a year) and our email newsletters.

Project aims to develop cheaper three-photon microscope

Share this on social media:

A new three-photon microscope, capable of obtaining tissue data at greater tissue depths than currently available - and at around a third of the cost - is in development.

The three-year Deep Tissue project is collaboration between Heriot Watt University in Scotland, ultrafast laser specialist Chromacity and microscope manufacturer Scientifica.

At present, companies, particularly in the field of medical research, can spend up to £350,000 for comparable analytic systems, which are capable of analysing up to half a millimetre beneath the surface of biological material.

In contrast, Deep Tissue aims to deliver a far more streamlined laser that in many cases will double the tissue depth that can be imaged. 

Three-photon microscopy allows individual cells to be analysed in high-resolution without damaging surrounding tissue and in a non-invasive manner.

The project builds upon research carried out by Professor Derryck Reid from the university’s Institute of Photonics and Quantum Sciences (IPAQS).

Dr Richard McCracken, a research fellow from IPAQS and project lead, said: 'This is a hugely exciting project to be involved with and it could significantly help open up a host of new research areas by providing a specialist technology at a greatly reduced cost.

‘The commercialisation of an affordable laser for deep tissue imaging will benefit researchers across the life sciences, including fields such as neuroscience where imaging of the brain through intact mouse skulls has already been demonstrated. Many future applications of this technology have not yet been identified due to the prohibitive cost of suitable laser systems but our collaboration will remove this barrier to development.’

The project would deliver a powerful new tool to the science community, according to Dr McCracken, who said it could open a host of new research areas including regenerative medicine, leukaemia and Alzheimer’s.

He added: ‘The laser can even be used to image into the roots of plants such as rice and wheat, in order to identify bacteria that inhibits growth and help with crop productivity.

‘At present, companies who want to carry out this research must purchase lasers that are capable of doing a variety of analysis, which means additional costs. What we want to do is create a laser that is carefully designed to carry out a specialist set of tasks. This means we can develop and invest in the necessary components, allowing us to significantly reduce overall costs while giving the end-user greater scope to carry out their research.’

Earlier this year, the project received a major financial boost when it was awarded a £360,000 research grant from the Science and Technology Facilities Council (STFC).

Shahida Imani, Chromacity CEO, said: ‘We are excited to join forces with the University and Scientifica to develop the laser elements of the Deep Tissue project, which has the potential to make a real difference in the fight against disease. The project is a great fit for Chromacity, as we have already integrated longer wavelength laser technology into microscopy systems to enable high-resolution imaging of biological samples at greater depths.’

A prototype of the laser technology is tabled for autumn 2020.