Thorlabs acquires Cirtemo for 'unique' optical technologies

Share this on social media:

Thorlabs has entered into a definitive purchase agreement to acquire Columbia-based Cirtemo, allowing Thorlabs to add two 'unique' technologies to its portfolio, according to the company, including: multivariate optical elements (MOEs) for spectroscopic chemical analysis, and nanopatterning tools known as MagAssemble, which are used to 3D print photolithography masks using nanoparticles.

Cirtemo’s multivariate optical elements (MOEs), are wide-band optical spectral filters capable of detecting complex chemical signatures using a simplified optical instrument, effectively replacing a dispersive spectrometer with a compact instrument that uses a single element detector. Although MOE’s are fabricated using the same techniques as traditional optical bandpass filters, Cirtemo’s wide-band optical interference filters are capable of sampling more spectral wavelengths than discrete bandpass filters. By doing so, MOEs provide a higher level of sensitivity and specificity for real-time chemical detection of powders, liquids, slurries, and gases with transmission signatures in the 250nm to 14µm range.

With the use of MOEs, spectroscopic optical systems can be smaller, lighter, and subjected to harsher environments than traditional optical systems, all while achieving the same analyte detection capabilities of laboratory-grade optical spectrometers.

The compact, MOE-enabled filter photometer configuration, achieved by combining multiple MOEs with a single system, is particularly advantageous for in-line process monitoring on the factory floor, point-of-care clinical use, and incorporation into field-based instruments. Using multiple MOEs, a focal plane array can be leveraged to create a real-time hyperspectral imager that can be employed to detect hazardous chemicals, explosive materials, and biological samples.

Cirtemo’s MagAssemble technology provides a low-cost and higher throughput alternative to the traditional microlithography techniques used to produce 2D patterned structures. The technology was developed by MagAssemble, which was recently consolidated with Cirtemo. 

Cirtemo’s patented pattern transfer nanomanufacturing (PTNM) platform can be employed to create customised photolithographic masks with features as small as a few nanometres. The masks are 'printed' by fusing ferrous nanoparticles (measuring ~30nm in diameter) that are organised into various unique nanometre-to-micron scale patterns. These patterns vary from simple lines to complex mixtures of lines, dots, circles, and polygons that can be etched into a range of flat or curved substrates.

Among other things, the PTNM process is ideal for producing custom diffractive optical elements for use in the UV to IR spectral range. It can be applied to numerous substrate materials, including polymers, silicon wafers, fused silica, sapphire, and even optical fibers, thus creating laser quality, robust, miniaturised optical components.

The Cirtemo team will remain in South Carolina, form a division called Thorlabs Spectral Works (TSW), and operate as an R&D facility reporting to Thorlabs’ Optics Business Unit in Newton, NJ.