White Papers

03 July 2017

Excitation-emission spectroscopy becomes increasingly useful in the study of photo-luminescent materials. The spectral selectivity of the technique enables the quantification of multiple emitting sites in rare-earth doped crystals as well as the rapid acquisition of polycyclic aromatic hydrocarbons (PAH) in contaminated water. In order to obtain a complete spectral fingerprint via excitation-emission spectroscopy, scans at multiple excitation wavelengths over the emission spectra are required. Especially in the case of rare-earth materials with narrow emission linewidths, this is extremely demanding in terms of resolution. The acquisition time of such excitation-emission maps (EEM) can be significantly reduced by using Charge Coupled Device (CCD) detectors.

22 June 2017

We present a novel photometric test system for LED luminaires. The new photometric system called 'FluxGage' uses solar panels to detect and measure light. By placing a diffuser and a black pinhole array over a solar panel we achieve a detection surface that is also an absorber. This enables the system to be the same size as the DUT (Device Under Test), as opposed to an integrating sphere, which is at least 3 times larger than the DUT. Simulations and experimental results show that this system can measure total flux with an uncertainty of 4.3%.

08 June 2017

Cylinder lenses are crucial to the progression of technology for applications ranging from medical diagnostic devices to laser diode correction mechanisms.

08 June 2017

Fluorescence spectroscopy has been used to characterise natural organic matter (NOM) in water. Excitation-emission maps reveal the nature and concentration of NOM in river water and can be used as a routine analysis technique in water treatment facilities.

10 April 2017

Red-edge fluorescence spectroscopy of proteins is a powerful tool to study protein structure and dynamics. The technique is demonstrated for studies of N-acetyl-L-tryptophanamide and porcine eye lens proteins.